TY - JOUR
T1 - A competing-risks model explains hierarchical spatial coupling of measles epidemics en route to national elimination
AU - Lau, Max S.Y.
AU - Becker, Alexander D.
AU - Korevaar, Hannah M.
AU - Caudron, Quentin
AU - Shaw, Darren J.
AU - Metcalf, C. Jessica E.
AU - Bjørnstad, Ottar N.
AU - Grenfell, Bryan T.
N1 - Publisher Copyright:
© 2020, The Author(s), under exclusive licence to Springer Nature Limited.
PY - 2020/7/1
Y1 - 2020/7/1
N2 - Apart from its global health importance, measles is a paradigm for the low-dimensional mechanistic understanding of local nonlinear population interactions. A central question for spatio-temporal dynamics is the relative roles of hierarchical spread from large cities to small towns and metapopulation transmission among local small population clusters in measles persistence. Quantifying this balance is critical to planning the regional elimination and global eradication of measles. Yet, current gravity models do not allow a formal comparison of hierarchical versus metapopulation spread. We address this gap with a competing-risks framework, capturing the relative importance of competing sources of reintroductions of infection. We apply the method to the uniquely spatio-temporally detailed urban incidence dataset for measles in England and Wales, from 1944 to the infection’s vaccine-induced nadir in the 1990s. We find that despite the regional influence of a few large cities (for example, London and Liverpool), metapopulation aggregation in neighbouring towns and cities played an important role in driving national dynamics in the prevaccination era. As vaccination levels increased in the 1970s and 1980s, the signature of spatially predictable spread diminished: increasingly, infection was introduced from unidentifiable random sources possibly outside regional metapopulations. The resulting erratic dynamics highlight the challenges of identifying shifting sources of infection and characterizing patterns of incidence in times of high vaccination coverage. More broadly, the underlying incidence and demographic data, accompanying this paper, will also provide an important resource for exploring nonlinear spatiotemporal population dynamics.
AB - Apart from its global health importance, measles is a paradigm for the low-dimensional mechanistic understanding of local nonlinear population interactions. A central question for spatio-temporal dynamics is the relative roles of hierarchical spread from large cities to small towns and metapopulation transmission among local small population clusters in measles persistence. Quantifying this balance is critical to planning the regional elimination and global eradication of measles. Yet, current gravity models do not allow a formal comparison of hierarchical versus metapopulation spread. We address this gap with a competing-risks framework, capturing the relative importance of competing sources of reintroductions of infection. We apply the method to the uniquely spatio-temporally detailed urban incidence dataset for measles in England and Wales, from 1944 to the infection’s vaccine-induced nadir in the 1990s. We find that despite the regional influence of a few large cities (for example, London and Liverpool), metapopulation aggregation in neighbouring towns and cities played an important role in driving national dynamics in the prevaccination era. As vaccination levels increased in the 1970s and 1980s, the signature of spatially predictable spread diminished: increasingly, infection was introduced from unidentifiable random sources possibly outside regional metapopulations. The resulting erratic dynamics highlight the challenges of identifying shifting sources of infection and characterizing patterns of incidence in times of high vaccination coverage. More broadly, the underlying incidence and demographic data, accompanying this paper, will also provide an important resource for exploring nonlinear spatiotemporal population dynamics.
UR - http://www.scopus.com/inward/record.url?scp=85084136625&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85084136625&partnerID=8YFLogxK
U2 - 10.1038/s41559-020-1186-6
DO - 10.1038/s41559-020-1186-6
M3 - Article
C2 - 32341514
AN - SCOPUS:85084136625
SN - 2397-334X
VL - 4
SP - 934
EP - 939
JO - Nature Ecology and Evolution
JF - Nature Ecology and Evolution
IS - 7
ER -