A comparative study of biomolecule and polymer surface modifications by a surface microdischarge Topical Issue: Recent Breakthroughs in Microplasma Science and Technology Kurt Becker, Jose Lopez, David Staack, Klaus-Dieter Weltmann and Wei Dong Zhu

Elliot A.J. Bartis, Pingshan Luan, Andrew J. Knoll, David B. Graves, Joonil Seog, Gottlieb S. Oehrlein

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

Cold atmospheric plasma (CAP) sources are attractive sources of reactive species with promising industrial and biomedical applications, but an understanding of underlying surface mechanisms is lacking. A kHz-powered surface microdischarge (SMD) operating with N2/O2 mixtures was used to study the biological deactivation of two immune-stimulating biomolecules: lipopolysaccharide (LPS) and peptidoglycan (PGN), found in bacteria such as Escherichia coli and Staphylococcus aureus, respectively. Model polymers were also studied to isolate specific functional groups. Changes in the surface chemistry were measured to understand which plasma-generated species and surface modifications are important for biological deactivation. The overall goal of this work is to determine which effects of CAP treatment are generic and which bonds are susceptible to attack. CAP treatment deactivated biomolecules, oxidized surfaces, and introduced surface bound NO3. These effects can be controlled by the N2 fraction in O2 and applied voltage and vary among different target surfaces. The SMD was compared with an Ar/O2/N2-fed kHz-powered atmospheric pressure plasma jet and showed much higher surface modifications and surface chemistry tunability compared to the jet. Possible mechanisms are discussed and findings are compared with recent computational investigations. Our results demonstrate the importance of long-lived plasma-generated species and advance an atomistic understanding of CAP-surface interactions.

Original languageEnglish (US)
Article number25
JournalEuropean Physical Journal D
Volume70
Issue number2
DOIs
StatePublished - Feb 1 2016
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Atomic and Molecular Physics, and Optics

Fingerprint

Dive into the research topics of 'A comparative study of biomolecule and polymer surface modifications by a surface microdischarge Topical Issue: Recent Breakthroughs in Microplasma Science and Technology Kurt Becker, Jose Lopez, David Staack, Klaus-Dieter Weltmann and Wei Dong Zhu'. Together they form a unique fingerprint.

Cite this