Abstract
Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.
Original language | English (US) |
---|---|
Pages (from-to) | 135-209 |
Number of pages | 75 |
Journal | Experimental Astronomy |
Volume | 46 |
Issue number | 1 |
DOIs | |
State | Published - Nov 1 2018 |
All Science Journal Classification (ASJC) codes
- Astronomy and Astrophysics
- Space and Planetary Science
Keywords
- Exoplanets
- IR spectroscopy
- Molecular signatures
- Space missions
Access to Document
Other files and links
Fingerprint
Dive into the research topics of 'A chemical survey of exoplanets with ARIEL'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
A chemical survey of exoplanets with ARIEL. / Tinetti, Giovanna; Drossart, Pierre; Eccleston, Paul; Hartogh, Paul; Heske, Astrid; Leconte, Jérémy; Micela, Giusi; Ollivier, Marc; Pilbratt, Göran; Puig, Ludovic; Turrini, Diego; Vandenbussche, Bart; Wolkenberg, Paulina; Beaulieu, Jean Philippe; Buchave, Lars A.; Ferus, Martin; Griffin, Matt; Guedel, Manuel; Justtanont, Kay; Lagage, Pierre Olivier; Machado, Pedro; Malaguti, Giuseppe; Min, Michiel; Nørgaard-Nielsen, Hans Ulrik; Rataj, Mirek; Ray, Tom; Ribas, Ignasi; Swain, Mark; Szabo, Robert; Werner, Stephanie; Barstow, Joanna; Burleigh, Matt; Cho, James; du Foresto, Vincent Coudé; Coustenis, Athena; Decin, Leen; Encrenaz, Therese; Galand, Marina; Gillon, Michael; Helled, Ravit; Morales, Juan Carlos; Muñoz, Antonio García; Moneti, Andrea; Pagano, Isabella; Pascale, Enzo; Piccioni, Giuseppe; Pinfield, David; Sarkar, Subhajit; Selsis, Franck; Tennyson, Jonathan; Triaud, Amaury; Venot, Olivia; Waldmann, Ingo; Waltham, David; Wright, Gillian; Amiaux, Jerome; Auguères, Jean Louis; Berthé, Michel; Bezawada, Naidu; Bishop, Georgia; Bowles, Neil; Coffey, Deirdre; Colomé, Josep; Crook, Martin; Crouzet, Pierre Elie; Da Peppo, Vania; Sanz, Isabel Escudero; Focardi, Mauro; Frericks, Martin; Hunt, Tom; Kohley, Ralf; Middleton, Kevin; Morgante, Gianluca; Ottensamer, Roland; Pace, Emanuele; Pearson, Chris; Stamper, Richard; Symonds, Kate; Rengel, Miriam; Renotte, Etienne; Ade, Peter; Affer, Laura; Alard, Christophe; Allard, Nicole; Altieri, Francesca; André, Yves; Arena, Claudio; Argyriou, Ioannis; Aylward, Alan; Baccani, Cristian; Bakos, Gaspar; Banaszkiewicz, Marek; Barlow, Mike; Batista, Virginie; Bellucci, Giancarlo; Benatti, Serena; Bernardi, Pernelle; Bézard, Bruno; Blecka, Maria; Bolmont, Emeline; Bonfond, Bertrand; Bonito, Rosaria; Bonomo, Aldo S.; Brucato, John Robert; Brun, Allan Sacha; Bryson, Ian; Bujwan, Waldemar; Casewell, Sarah; Charnay, Bejamin; Pestellini, Cesare Cecchi; Chen, Guo; Ciaravella, Angela; Claudi, Riccardo; Clédassou, Rodolphe; Damasso, Mario; Damiano, Mario; Danielski, Camilla; Deroo, Pieter; Di Giorgio, Anna Maria; Dominik, Carsten; Doublier, Vanessa; Doyle, Simon; Doyon, René; Drummond, Benjamin; Duong, Bastien; Eales, Stephen; Edwards, Billy; Farina, Maria; Flaccomio, Ettore; Fletcher, Leigh; Forget, François; Fossey, Steve; Fränz, Markus; Fujii, Yuka; García-Piquer, Álvaro; Gear, Walter; Geoffray, Hervé; Gérard, Jean Claude; Gesa, Lluis; Gomez, H.; Graczyk, Rafał; Griffith, Caitlin; Grodent, Denis; Guarcello, Mario Giuseppe; Gustin, Jacques; Hamano, Keiko; Hargrave, Peter; Hello, Yann; Heng, Kevin; Herrero, Enrique; Hornstrup, Allan; Hubert, Benoit; Ida, Shigeru; Ikoma, Masahiro; Iro, Nicolas; Irwin, Patrick; Jarchow, Christopher; Jaubert, Jean; Jones, Hugh; Julien, Queyrel; Kameda, Shingo; Kerschbaum, Franz; Kervella, Pierre; Koskinen, Tommi; Krijger, Matthijs; Krupp, Norbert; Lafarga, Marina; Landini, Federico; Lellouch, Emanuel; Leto, Giuseppe; Luntzer, A.; Rank-Lüftinger, Theresa; Maggio, Antonio; Maldonado, Jesus; Maillard, Jean Pierre; Mall, Urs; Marquette, Jean Baptiste; Mathis, Stephane; Maxted, Pierre; Matsuo, Taro; Medvedev, Alexander; Miguel, Yamila; Minier, Vincent; Morello, Giuseppe; Mura, Alessandro; Narita, Norio; Nascimbeni, Valerio; Nguyen Tong, N.; Noce, Vladimiro; Oliva, Fabrizio; Palle, Enric; Palmer, Paul; Pancrazzi, Maurizio; Papageorgiou, Andreas; Parmentier, Vivien; Perger, Manuel; Petralia, Antonino; Pezzuto, Stefano; Pierrehumbert, Ray; Pillitteri, Ignazio; Piotto, Giampaolo; Pisano, Giampaolo; Prisinzano, Loredana; Radioti, Aikaterini; Réess, Jean Michel; Rezac, Ladislav; Rocchetto, Marco; Rosich, Albert; Sanna, Nicoletta; Santerne, Alexandre; Savini, Giorgio; Scandariato, Gaetano; Sicardy, Bruno; Sierra, Carles; Sindoni, Giuseppe; Skup, Konrad; Snellen, Ignas; Sobiecki, Mateusz; Soret, Lauriane; Sozzetti, Alessandro; Stiepen, A.; Strugarek, Antoine; Taylor, Jake; Taylor, William; Terenzi, Luca; Tessenyi, Marcell; Tsiaras, Angelos; Tucker, C.; Valencia, Diana; Vasisht, Gautam; Vazan, Allona; Vilardell, Francesc; Vinatier, Sabrine; Viti, Serena; Waters, Rens; Wawer, Piotr; Wawrzaszek, Anna; Whitworth, Anthony; Yung, Yuk L.; Yurchenko, Sergey N.; Osorio, María Rosa Zapatero; Zellem, Robert; Zingales, Tiziano; Zwart, Frans.
In: Experimental Astronomy, Vol. 46, No. 1, 01.11.2018, p. 135-209.Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - A chemical survey of exoplanets with ARIEL
AU - Tinetti, Giovanna
AU - Drossart, Pierre
AU - Eccleston, Paul
AU - Hartogh, Paul
AU - Heske, Astrid
AU - Leconte, Jérémy
AU - Micela, Giusi
AU - Ollivier, Marc
AU - Pilbratt, Göran
AU - Puig, Ludovic
AU - Turrini, Diego
AU - Vandenbussche, Bart
AU - Wolkenberg, Paulina
AU - Beaulieu, Jean Philippe
AU - Buchave, Lars A.
AU - Ferus, Martin
AU - Griffin, Matt
AU - Guedel, Manuel
AU - Justtanont, Kay
AU - Lagage, Pierre Olivier
AU - Machado, Pedro
AU - Malaguti, Giuseppe
AU - Min, Michiel
AU - Nørgaard-Nielsen, Hans Ulrik
AU - Rataj, Mirek
AU - Ray, Tom
AU - Ribas, Ignasi
AU - Swain, Mark
AU - Szabo, Robert
AU - Werner, Stephanie
AU - Barstow, Joanna
AU - Burleigh, Matt
AU - Cho, James
AU - du Foresto, Vincent Coudé
AU - Coustenis, Athena
AU - Decin, Leen
AU - Encrenaz, Therese
AU - Galand, Marina
AU - Gillon, Michael
AU - Helled, Ravit
AU - Morales, Juan Carlos
AU - Muñoz, Antonio García
AU - Moneti, Andrea
AU - Pagano, Isabella
AU - Pascale, Enzo
AU - Piccioni, Giuseppe
AU - Pinfield, David
AU - Sarkar, Subhajit
AU - Selsis, Franck
AU - Tennyson, Jonathan
AU - Triaud, Amaury
AU - Venot, Olivia
AU - Waldmann, Ingo
AU - Waltham, David
AU - Wright, Gillian
AU - Amiaux, Jerome
AU - Auguères, Jean Louis
AU - Berthé, Michel
AU - Bezawada, Naidu
AU - Bishop, Georgia
AU - Bowles, Neil
AU - Coffey, Deirdre
AU - Colomé, Josep
AU - Crook, Martin
AU - Crouzet, Pierre Elie
AU - Da Peppo, Vania
AU - Sanz, Isabel Escudero
AU - Focardi, Mauro
AU - Frericks, Martin
AU - Hunt, Tom
AU - Kohley, Ralf
AU - Middleton, Kevin
AU - Morgante, Gianluca
AU - Ottensamer, Roland
AU - Pace, Emanuele
AU - Pearson, Chris
AU - Stamper, Richard
AU - Symonds, Kate
AU - Rengel, Miriam
AU - Renotte, Etienne
AU - Ade, Peter
AU - Affer, Laura
AU - Alard, Christophe
AU - Allard, Nicole
AU - Altieri, Francesca
AU - André, Yves
AU - Arena, Claudio
AU - Argyriou, Ioannis
AU - Aylward, Alan
AU - Baccani, Cristian
AU - Bakos, Gaspar
AU - Banaszkiewicz, Marek
AU - Barlow, Mike
AU - Batista, Virginie
AU - Bellucci, Giancarlo
AU - Benatti, Serena
AU - Bernardi, Pernelle
AU - Bézard, Bruno
AU - Blecka, Maria
AU - Bolmont, Emeline
AU - Bonfond, Bertrand
AU - Bonito, Rosaria
AU - Bonomo, Aldo S.
AU - Brucato, John Robert
AU - Brun, Allan Sacha
AU - Bryson, Ian
AU - Bujwan, Waldemar
AU - Casewell, Sarah
AU - Charnay, Bejamin
AU - Pestellini, Cesare Cecchi
AU - Chen, Guo
AU - Ciaravella, Angela
AU - Claudi, Riccardo
AU - Clédassou, Rodolphe
AU - Damasso, Mario
AU - Damiano, Mario
AU - Danielski, Camilla
AU - Deroo, Pieter
AU - Di Giorgio, Anna Maria
AU - Dominik, Carsten
AU - Doublier, Vanessa
AU - Doyle, Simon
AU - Doyon, René
AU - Drummond, Benjamin
AU - Duong, Bastien
AU - Eales, Stephen
AU - Edwards, Billy
AU - Farina, Maria
AU - Flaccomio, Ettore
AU - Fletcher, Leigh
AU - Forget, François
AU - Fossey, Steve
AU - Fränz, Markus
AU - Fujii, Yuka
AU - García-Piquer, Álvaro
AU - Gear, Walter
AU - Geoffray, Hervé
AU - Gérard, Jean Claude
AU - Gesa, Lluis
AU - Gomez, H.
AU - Graczyk, Rafał
AU - Griffith, Caitlin
AU - Grodent, Denis
AU - Guarcello, Mario Giuseppe
AU - Gustin, Jacques
AU - Hamano, Keiko
AU - Hargrave, Peter
AU - Hello, Yann
AU - Heng, Kevin
AU - Herrero, Enrique
AU - Hornstrup, Allan
AU - Hubert, Benoit
AU - Ida, Shigeru
AU - Ikoma, Masahiro
AU - Iro, Nicolas
AU - Irwin, Patrick
AU - Jarchow, Christopher
AU - Jaubert, Jean
AU - Jones, Hugh
AU - Julien, Queyrel
AU - Kameda, Shingo
AU - Kerschbaum, Franz
AU - Kervella, Pierre
AU - Koskinen, Tommi
AU - Krijger, Matthijs
AU - Krupp, Norbert
AU - Lafarga, Marina
AU - Landini, Federico
AU - Lellouch, Emanuel
AU - Leto, Giuseppe
AU - Luntzer, A.
AU - Rank-Lüftinger, Theresa
AU - Maggio, Antonio
AU - Maldonado, Jesus
AU - Maillard, Jean Pierre
AU - Mall, Urs
AU - Marquette, Jean Baptiste
AU - Mathis, Stephane
AU - Maxted, Pierre
AU - Matsuo, Taro
AU - Medvedev, Alexander
AU - Miguel, Yamila
AU - Minier, Vincent
AU - Morello, Giuseppe
AU - Mura, Alessandro
AU - Narita, Norio
AU - Nascimbeni, Valerio
AU - Nguyen Tong, N.
AU - Noce, Vladimiro
AU - Oliva, Fabrizio
AU - Palle, Enric
AU - Palmer, Paul
AU - Pancrazzi, Maurizio
AU - Papageorgiou, Andreas
AU - Parmentier, Vivien
AU - Perger, Manuel
AU - Petralia, Antonino
AU - Pezzuto, Stefano
AU - Pierrehumbert, Ray
AU - Pillitteri, Ignazio
AU - Piotto, Giampaolo
AU - Pisano, Giampaolo
AU - Prisinzano, Loredana
AU - Radioti, Aikaterini
AU - Réess, Jean Michel
AU - Rezac, Ladislav
AU - Rocchetto, Marco
AU - Rosich, Albert
AU - Sanna, Nicoletta
AU - Santerne, Alexandre
AU - Savini, Giorgio
AU - Scandariato, Gaetano
AU - Sicardy, Bruno
AU - Sierra, Carles
AU - Sindoni, Giuseppe
AU - Skup, Konrad
AU - Snellen, Ignas
AU - Sobiecki, Mateusz
AU - Soret, Lauriane
AU - Sozzetti, Alessandro
AU - Stiepen, A.
AU - Strugarek, Antoine
AU - Taylor, Jake
AU - Taylor, William
AU - Terenzi, Luca
AU - Tessenyi, Marcell
AU - Tsiaras, Angelos
AU - Tucker, C.
AU - Valencia, Diana
AU - Vasisht, Gautam
AU - Vazan, Allona
AU - Vilardell, Francesc
AU - Vinatier, Sabrine
AU - Viti, Serena
AU - Waters, Rens
AU - Wawer, Piotr
AU - Wawrzaszek, Anna
AU - Whitworth, Anthony
AU - Yung, Yuk L.
AU - Yurchenko, Sergey N.
AU - Osorio, María Rosa Zapatero
AU - Zellem, Robert
AU - Zingales, Tiziano
AU - Zwart, Frans
N1 - Funding Information: The payload consortium would like to thank the national agencies for their support during the assessment study. Many co-authors of this paper were supported by European Research Council grants (programs AEROSOL , E3ARTHS , ExoAI , ExoLights , ExoMol, MoltenEarths , SPECULOOS , WHIPLASH), H2020-COMPET-2017 (ExoplANETS A) and ANR (e-PYTHEAS) UKSA grant ST/S002634/1. We would like to thank the ESA CDF team, as well as TEC and SRE directorate colleagues and industrial teams led by Airbus Defense and Space ? France and TAS ? France who provided support during the course of the study. Publisher Copyright: © 2018, The Author(s).
PY - 2018/11/1
Y1 - 2018/11/1
N2 - Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.
AB - Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.
KW - Exoplanets
KW - IR spectroscopy
KW - Molecular signatures
KW - Space missions
UR - http://www.scopus.com/inward/record.url?scp=85053523967&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85053523967&partnerID=8YFLogxK
U2 - 10.1007/s10686-018-9598-x
DO - 10.1007/s10686-018-9598-x
M3 - Article
AN - SCOPUS:85053523967
VL - 46
SP - 135
EP - 209
JO - Experimental Astronomy
JF - Experimental Astronomy
SN - 0922-6435
IS - 1
ER -