A Boosting Approach to Reinforcement Learning

Nataly Brukhim, Elad Hazan, Karan Singh

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

Reducing reinforcement learning to supervised learning is a well-studied and effective approach that leverages the benefits of compact function approximation to deal with large-scale Markov decision processes. Independently, the boosting methodology (e.g. AdaBoost) has proven to be indispensable in designing efficient and accurate classification algorithms by combining inaccurate rules-of-thumb. In this paper, we take a further step: we reduce reinforcement learning to a sequence of weak learning problems. Since weak learners perform only marginally better than random guesses, such subroutines constitute a weaker assumption than the availability of an accurate supervised learning oracle. We prove that the sample complexity and running time bounds of the proposed method do not explicitly depend on the number of states. While existing results on boosting operate on convex losses, the value function over policies is non-convex. We show how to use a non-convex variant of the Frank-Wolfe method for boosting, that additionally improves upon the known sample complexity and running time even for reductions to supervised learning.

Original languageEnglish (US)
Title of host publicationAdvances in Neural Information Processing Systems 35 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022
EditorsS. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, A. Oh
PublisherNeural information processing systems foundation
ISBN (Electronic)9781713871088
StatePublished - 2022
Event36th Conference on Neural Information Processing Systems, NeurIPS 2022 - New Orleans, United States
Duration: Nov 28 2022Dec 9 2022

Publication series

NameAdvances in Neural Information Processing Systems
Volume35
ISSN (Print)1049-5258

Conference

Conference36th Conference on Neural Information Processing Systems, NeurIPS 2022
Country/TerritoryUnited States
CityNew Orleans
Period11/28/2212/9/22

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'A Boosting Approach to Reinforcement Learning'. Together they form a unique fingerprint.

Cite this