A bit of secrecy for Gaussian source compression

Eva C. Song, Paul Cuff, H. Vincent Poor

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Scopus citations


In this paper, the compression of an independent and identically distributed Gaussian source sequence is studied in an unsecure network. Within a game theoretic setting for a three-party noiseless communication network (sender Alice, legitimate receiver Bob, and eavesdropper Eve), the problem of how to efficiently compress a Gaussian source with limited secret key in order to guarantee that Bob can reconstruct with high fidelity while preventing Eve from estimating an accurate reconstruction is investigated. It is assumed that Alice and Bob share a secret key with limited rate. Three scenarios are studied, in which the eavesdropper ranges from weak to strong in terms of the causal side information she has. It is shown that one bit of secret key per source symbol is enough to achieve perfect secrecy performance in the Gaussian squared error setting, and the information theoretic region is not optimized by joint Gaussian random variables.

Original languageEnglish (US)
Title of host publication2013 IEEE International Symposium on Information Theory, ISIT 2013
Number of pages5
StatePublished - 2013
Event2013 IEEE International Symposium on Information Theory, ISIT 2013 - Istanbul, Turkey
Duration: Jul 7 2013Jul 12 2013

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
ISSN (Print)2157-8095


Other2013 IEEE International Symposium on Information Theory, ISIT 2013

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • Information Systems
  • Modeling and Simulation
  • Applied Mathematics


Dive into the research topics of 'A bit of secrecy for Gaussian source compression'. Together they form a unique fingerprint.

Cite this