TY - JOUR
T1 - A biophysical threshold for biofilm formation
AU - Moore-Ott, Jenna A.
AU - Chiu, Selena
AU - Amchin, Daniel B.
AU - Bhattacharjee, Tapomoy
AU - Datta, Sujit S.
N1 - Publisher Copyright:
© 2022, eLife Sciences Publications Ltd. All rights reserved.
PY - 2022/6
Y1 - 2022/6
N2 - Bacteria are ubiquitous in our daily lives, either as motile planktonic cells or as immobilized surface-attached bio lms. These di erent phenotypic states play key roles in agriculture, environment, industry, and medicine; hence, it is critically important to be able to predict the conditions under which bacteria transition from one state to the other. Unfortunately, these transitions depend on a dizzyingly complex array of factors that are determined by the intrinsic properties of the individual cells as well as those of their surrounding environments, and are thus challenging to describe. To address this issue, here, we develop a generally-applicable biophysical model of the interplay between motility-mediated dispersal and bio lm formation under positive quorum sensing control. Using this model, we establish a universal rule predicting how the onset and extent of bio lm formation depend collectively on cell concentration and motility, nutrient di usion and consumption, chemotactic sensing, and autoinducer production. Our work thus provides a key step toward quantitatively predicting and controlling bio lm formation in diverse and complex settings.
AB - Bacteria are ubiquitous in our daily lives, either as motile planktonic cells or as immobilized surface-attached bio lms. These di erent phenotypic states play key roles in agriculture, environment, industry, and medicine; hence, it is critically important to be able to predict the conditions under which bacteria transition from one state to the other. Unfortunately, these transitions depend on a dizzyingly complex array of factors that are determined by the intrinsic properties of the individual cells as well as those of their surrounding environments, and are thus challenging to describe. To address this issue, here, we develop a generally-applicable biophysical model of the interplay between motility-mediated dispersal and bio lm formation under positive quorum sensing control. Using this model, we establish a universal rule predicting how the onset and extent of bio lm formation depend collectively on cell concentration and motility, nutrient di usion and consumption, chemotactic sensing, and autoinducer production. Our work thus provides a key step toward quantitatively predicting and controlling bio lm formation in diverse and complex settings.
UR - http://www.scopus.com/inward/record.url?scp=85134624900&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85134624900&partnerID=8YFLogxK
U2 - 10.7554/eLife.76380
DO - 10.7554/eLife.76380
M3 - Article
C2 - 35642782
AN - SCOPUS:85134624900
SN - 2050-084X
VL - 11
JO - eLife
JF - eLife
M1 - e76380
ER -