A 4 × 4 Steerable 14-dBm EIRP Array on CMOS at 0.41 THz With a 2-D Distributed Oscillator Network

Hooman Saeidi, Suresh Venkatesh, Chandrakanth Reddy Chappidi, Tushar Sharma, Chengjie Zhu, Kaushik Sengupta

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

Terahertz (THz) beamforming arrays are critical to address emerging applications in wireless communication, sensing, and imaging. Enabling such architectures, particularly with respect to synchronization of distributed radiating THz sources, is very challenging due to the sensitivity of such synchronizations to variations of process, voltage, temperature (PVT), and device mismatches. In this article, we propose and demonstrate a multi-layer THz array architecture to address robust frequency synthesis, optimal harmonic THz power generation, and scalable phase generation for THz beamforming. The bottom-most layer of this multi-layer network consists of a scalable 2-D negative transconductance (-Gm) cells that collectively oscillates at the center frequency of 69.3 GHz, thereby establishing a robust frequency and phase distribution across the entire chip. By eliminating independent oscillation capability of each node and merging resonator and coupling structures into one single network, the 2-D mesh removes the possibility of moving out of synchronization due to PVT variations or device mismatches and forms the underlying frequency synthesis layer. Local frequency multiplication and radiating elements are placed across the 2-D THz array, and beamforming is enabled through varactor control in the -Gm cells. We demonstrate the proposed architecture in a 4×4 array with effective isotropic radiation power (EIRP) of +14 dBm at 0.416 THz in a lensless setup using a 65-nm CMOS process with the beamforming capability of ±30° in both E- and H-planes.

Original languageEnglish (US)
Pages (from-to)3125-3138
Number of pages14
JournalIEEE Journal of Solid-State Circuits
Volume57
Issue number10
DOIs
StatePublished - Oct 1 2022
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Electrical and Electronic Engineering

Keywords

  • Beamforming
  • CMOS
  • coupled oscillator
  • imaging
  • injection locking
  • mutual locking
  • oscillator network
  • terahertz (THz) power generation

Fingerprint

Dive into the research topics of 'A 4 × 4 Steerable 14-dBm EIRP Array on CMOS at 0.41 THz With a 2-D Distributed Oscillator Network'. Together they form a unique fingerprint.

Cite this