A 19% efficient and stable organic photovoltaic device enabled by a guest nonfullerene acceptor with fibril-like morphology

Hu Chen, Sang Young Jeong, Junfu Tian, Yadong Zhang, Dipti R. Naphade, Maryam Alsufyani, Weimin Zhang, Sophie Griggs, Hanlin Hu, Stephen Barlow, Han Young Woo, Seth R. Marder, Thomas D. Anthopoulos, Iain McCulloch, Yuanbao Lin

Research output: Contribution to journalArticlepeer-review

68 Scopus citations

Abstract

A nonfullerene acceptor, isoIDITC, capable of exhibiting fibril-like morphology, is utilized as a third component in organic photovoltaic devices (OPVs). A power conversion efficiency (PCE) of 19% is achieved in ternary PM6:BTP-eC9:isoIDITC bulk-heterojunction (BHJ) devices. Analyses reveal the formation of an alloy model (BTP-eC9:isoIDTIC) and a well-defined fibril-like network and enhanced crystallization of BHJ in the ternary blend. Slightly increased carrier mobilities, longer carrier lifetimes, and suppressed trap-assisted/bimolecular recombination are observed in the ternary BHJ-based devices compared to the binary PM6:BTP-eC9 BHJ cells. Moreover, because of the high surface energy (γ) and low glass-transition temperature (Tg) of BTP-eC9, the acceptor and donor tend to migrate toward the hole and electron collecting electrodes, respectively, during aging tests. Crucially, isoIDTIC with low γ and high Tg has a low diffusion coefficient and can suppress demixing in vertical stratification of the BHJ, resulting in an increase in T80 lifetime from 101 hours to 254 hours. Our results highlight the utilization of the nonfullerene acceptor with fibril-like morphology and high Tg as an important third component toward high-performance and stable ternary OPVs.

Original languageEnglish (US)
Pages (from-to)1062-1070
Number of pages9
JournalEnergy and Environmental Science
Volume16
Issue number3
DOIs
StatePublished - Jan 6 2023
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Environmental Chemistry
  • Renewable Energy, Sustainability and the Environment
  • Nuclear Energy and Engineering
  • Pollution

Fingerprint

Dive into the research topics of 'A 19% efficient and stable organic photovoltaic device enabled by a guest nonfullerene acceptor with fibril-like morphology'. Together they form a unique fingerprint.

Cite this