TY - JOUR
T1 - 3D Radiation Hydrodynamic Simulations of Gravitational Instability in AGN Accretion Disks
T2 - Effects of Radiation Pressure
AU - Chen, Yi Xian
AU - Jiang, Yan Fei
AU - Goodman, Jeremy
AU - Ostriker, Eve C.
N1 - Publisher Copyright:
© 2023. The Author(s). Published by the American Astronomical Society.
PY - 2023/5/1
Y1 - 2023/5/1
N2 - We perform 3D radiation hydrodynamic local shearing-box simulations to study the outcome of gravitational instability (GI) in optically thick active galactic nuclei (AGNs) accretion disks. GI develops when the Toomre parameter Q T ≲ 1, and may lead to turbulent heating that balances radiative cooling. However, when radiative cooling is too efficient, the disk may undergo runaway gravitational fragmentation. In the fully gas-pressure-dominated case, we confirm the classical result that such a thermal balance holds when the Shakura-Sunyaev viscosity parameter (α) due to the gravitationally driven turbulence is ≲0.2, corresponding to dimensionless cooling times Ωt cool ≳ 5. As the fraction of support by radiation pressure increases, the disk becomes more prone to fragmentation, with a reduced (increased) critical value of α (Ωt cool). The effect is already significant when the radiation pressure exceeds 10% of the gas pressure, while fully radiation-pressure-dominated disks fragment at t cool ≲ 50 Ω−1. The latter translates to a maximum turbulence level α ≲ 0.02, comparable to that generated by magnetorotational instability. Our results suggest that gravitationally unstable (Q T ∼ 1) outer regions of AGN disks with significant radiation pressure (likely for high/near-Eddington accretion rates) should always fragment into stars, and perhaps black holes.
AB - We perform 3D radiation hydrodynamic local shearing-box simulations to study the outcome of gravitational instability (GI) in optically thick active galactic nuclei (AGNs) accretion disks. GI develops when the Toomre parameter Q T ≲ 1, and may lead to turbulent heating that balances radiative cooling. However, when radiative cooling is too efficient, the disk may undergo runaway gravitational fragmentation. In the fully gas-pressure-dominated case, we confirm the classical result that such a thermal balance holds when the Shakura-Sunyaev viscosity parameter (α) due to the gravitationally driven turbulence is ≲0.2, corresponding to dimensionless cooling times Ωt cool ≳ 5. As the fraction of support by radiation pressure increases, the disk becomes more prone to fragmentation, with a reduced (increased) critical value of α (Ωt cool). The effect is already significant when the radiation pressure exceeds 10% of the gas pressure, while fully radiation-pressure-dominated disks fragment at t cool ≲ 50 Ω−1. The latter translates to a maximum turbulence level α ≲ 0.02, comparable to that generated by magnetorotational instability. Our results suggest that gravitationally unstable (Q T ∼ 1) outer regions of AGN disks with significant radiation pressure (likely for high/near-Eddington accretion rates) should always fragment into stars, and perhaps black holes.
UR - http://www.scopus.com/inward/record.url?scp=85159822158&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85159822158&partnerID=8YFLogxK
U2 - 10.3847/1538-4357/acc023
DO - 10.3847/1538-4357/acc023
M3 - Article
AN - SCOPUS:85159822158
SN - 0004-637X
VL - 948
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 2
M1 - 120
ER -