3D priors for scene learning from a single view

Diego Rother, Kedar Patwardhan, Iman Aganj, Guillermo Sapiro

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

A framework for scene learning from a single still video camera is presented in this work. In particular, the camera transformation and the direction of the shadows are learned using information extracted from pedestrians walking in the scene. The proposed approach poses the scene learning estimation as a likelihood maximization problem, efficiently solved via factorization and dynamic programming, and amenable to an online implementation. We introduce a 3D prior to model the pedestrian's appearance from any viewpoint, and learn it using a standard off-the-shelf consumer video camera and the Radon transform. This 3D prior or "appearance model" is used to quantify the agreement between the tentative parameters and the actual video observations, taking into account not only the pixels occupied by the pedestrian, but also those occupied by the his shadows and/or reflections. The presentation of the framework is complemented with an example of a casual video scene showing the importance of the learned 3D pedestrian prior and the accuracy of the proposed approach.

Original languageEnglish (US)
Title of host publication2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops
DOIs
StatePublished - 2008
Externally publishedYes
Event2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops - Anchorage, AK, United States
Duration: Jun 23 2008Jun 28 2008

Publication series

Name2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops

Conference

Conference2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops
Country/TerritoryUnited States
CityAnchorage, AK
Period6/23/086/28/08

All Science Journal Classification (ASJC) codes

  • Computer Vision and Pattern Recognition
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of '3D priors for scene learning from a single view'. Together they form a unique fingerprint.

Cite this