TY - JOUR
T1 - 2D full-wave simulation of waves in space and tokamak plasmas
AU - Kim, Eun Hwa
AU - Bertelli, Nicola
AU - Johnson, Jay
AU - Valeo, Ernest
AU - Hosea, Joel
N1 - Publisher Copyright:
© 2017 The authors, published by EDP Sciences.
PY - 2017/10/23
Y1 - 2017/10/23
N2 - Simulation results using a 2D full-wave code (FW2D) for space and NSTX fusion plasmas are presented. The FW2D code solves the cold plasma wave equations using the finite element method. The wave code has been successfully applied to describe low frequency waves in planetary magnetospheres (i.e., dipole geometry) and the results include generation and propagation of externally driven ultra-low frequency waves via mode conversion at Mercury and mode coupling, refraction and reflection of internally driven field-aligned propagating left-handed electromagnetic ion cyclotron (EMIC) waves at Earth. In this paper, global structure of linearly polarized EMIC waves is examined and the result shows such resonant wave modes can be localized near the equatorial plane. We also adopt the FW2D code to tokamak geometry and examine radio frequency (RF) waves in the scape-off layer (SOL) of tokamaks. By adopting the rectangular and limiter boundary, we compare the results with existing AORSA simulations. The FW2D code results for the high harmonic fast wave heating case on NSTX with a rectangular vessel boundary shows excellent agreement with the AORSA code.
AB - Simulation results using a 2D full-wave code (FW2D) for space and NSTX fusion plasmas are presented. The FW2D code solves the cold plasma wave equations using the finite element method. The wave code has been successfully applied to describe low frequency waves in planetary magnetospheres (i.e., dipole geometry) and the results include generation and propagation of externally driven ultra-low frequency waves via mode conversion at Mercury and mode coupling, refraction and reflection of internally driven field-aligned propagating left-handed electromagnetic ion cyclotron (EMIC) waves at Earth. In this paper, global structure of linearly polarized EMIC waves is examined and the result shows such resonant wave modes can be localized near the equatorial plane. We also adopt the FW2D code to tokamak geometry and examine radio frequency (RF) waves in the scape-off layer (SOL) of tokamaks. By adopting the rectangular and limiter boundary, we compare the results with existing AORSA simulations. The FW2D code results for the high harmonic fast wave heating case on NSTX with a rectangular vessel boundary shows excellent agreement with the AORSA code.
UR - https://www.scopus.com/pages/publications/85032642935
UR - https://www.scopus.com/inward/citedby.url?scp=85032642935&partnerID=8YFLogxK
U2 - 10.1051/epjconf/201715702005
DO - 10.1051/epjconf/201715702005
M3 - Conference article
AN - SCOPUS:85032642935
SN - 2101-6275
VL - 157
JO - EPJ Web of Conferences
JF - EPJ Web of Conferences
M1 - 02005
T2 - 22nd Topical Conference on Radio-Frequency Power in Plasmas 2017
Y2 - 30 May 2017 through 2 June 2017
ER -