μmap-Red: Proximity Labeling by Red Light Photocatalysis

Benito F. Buksh, Steve D. Knutson, James V. Oakley, Noah B. Bissonnette, Daniel G. Oblinsky, Michael P. Schwoerer, Ciaran P. Seath, Jacob B. Geri, Frances P. Rodriguez-Rivera, Dann L. Parker, Gregory D. Scholes, Alexander Ploss, David W.C. Macmillan

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

Modern proximity labeling techniques have enabled significant advances in understanding biomolecular interactions. However, current tools primarily utilize activation modes that are incompatible with complex biological environments, limiting our ability to interrogate cell-and tissue-level microenvironments in animal models. Here, we report μMap-Red, a proximity labeling platform that uses a red-light-excited SnIVchlorin e6 catalyst to activate a phenyl azide biotin probe. We validate μMap-Red by demonstrating photonically controlled protein labeling in vitro through several layers of tissue, and we then apply our platform in cellulo to label EGFR microenvironments and validate performance with STED microscopy and quantitative proteomics. Finally, to demonstrate labeling in a complex biological sample, we deploy μMap-Red in whole mouse blood to profile erythrocyte cell-surface proteins. This work represents a significant methodological advance toward light-based proximity labeling in complex tissue environments and animal models.

Original languageEnglish (US)
Pages (from-to)6154-6162
Number of pages9
JournalJournal of the American Chemical Society
Volume144
Issue number14
DOIs
StatePublished - Apr 13 2022

All Science Journal Classification (ASJC) codes

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'μmap-Red: Proximity Labeling by Red Light Photocatalysis'. Together they form a unique fingerprint.

Cite this