Abstract
We revisit the η-pairing states in Hubbard models and explore their connections to quantum many-body scars to discover a universal scars mechanism. η-pairing occurs due to an algebraic structure known as a spectrum generating algebra (SGA), giving rise to equally spaced towers of eigenstates in the spectrum. We generalize the original η-pairing construction and show that several Hubbard-like models on arbitrary graphs exhibit SGAs, including ones with disorder and spin-orbit coupling. We further define a restricted spectrum generating algebra (RSGA) and give examples of perturbations to the Hubbard-like models that preserve an equally spaced tower of the original model as eigenstates. The states of the surviving tower exhibit a subthermal entanglement entropy, and we analytically obtain parameter regimes for which they lie in the bulk of the spectrum, showing that they are exact quantum many-body scars. The RSGA framework also explains the equally spaced towers of eigenstates in several well-known models of quantum scars, including the Affleck-Kennedy-Lieb-Tasaki model.
Original language | English (US) |
---|---|
Article number | 085140 |
Journal | Physical Review B |
Volume | 102 |
Issue number | 8 |
DOIs | |
State | Published - Aug 15 2020 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics