• 6233 Citations
  • 29 h-Index
20082020

Research output per year

If you made any changes in Pure these will be visible here soon.

Research Output

2020

A data-driven computational scheme for the nonlinear mechanical properties of cellular mechanical metamaterials under large deformation

Xue, T., Beatson, A., Chiaramonte, M., Roeder, G., Ash, J. T., Menguc, Y., Adriaenssens, S., Adams, R. P. & Mao, S., Aug 28 2020, In : Soft matter. 16, 32, p. 7524-7534 11 p.

Research output: Contribution to journalArticle

Open Access
2019

Approximate inference for constructing astronomical catalogs from images

The Voleon Group, Sep 2019, In : Annals of Applied Statistics. 13, 3, p. 1884-1926 43 p.

Research output: Contribution to journalArticle

Open Access
3 Scopus citations

Discrete object generation with reversible inductive construction

Seff, A., Zhou, W., Damani, F., Doyle, A. & Adams, R. P., 2019, In : Advances in Neural Information Processing Systems. 32

Research output: Contribution to journalConference article

Efficient optimization of loops and limits with randomized telescoping sums

Beatson, A. & Adams, R. P., Jan 1 2019, 36th International Conference on Machine Learning, ICML 2019. International Machine Learning Society (IMLS), p. 836-854 19 p. (36th International Conference on Machine Learning, ICML 2019; vol. 2019-June).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Non-vacuous generalization bounds at the Im-AGeNet scale: A Pac-Bayesian compression approach

Zhou, W., Veitch, V., Austern, M., Adams, R. P. & Orbanz, P., Jan 1 2019.

Research output: Contribution to conferencePaper

Non-vacuous generalization bounds at the Im-AGeNet scale: A Pac-Bayesian compression approach

Zhou, W., Veitch, V., Austern, M., Adams, R. P. & Orbanz, P., 2019.

Research output: Contribution to conferencePaper

8 Scopus citations

Rapid Prediction of Electron-Ionization Mass Spectrometry Using Neural Networks

Wei, J. N., Belanger, D., Adams, R. P. & Sculley, D., Apr 24 2019, In : ACS Central Science. 5, 4, p. 700-708 9 p.

Research output: Contribution to journalArticle

Open Access
14 Scopus citations

SpArSe: Sparse architecture search for CNNs on resource-constrained microcontrollers

Fedorov, I., Adams, R. P., Mattina, M. & Whatmough, P. N., 2019, In : Advances in Neural Information Processing Systems. 32

Research output: Contribution to journalConference article

2 Scopus citations
2018

A Bayesian nonparametric view on count-min sketch

Cai, D., Mitzenmacher, M. & Adams, R. P., Jan 1 2018, In : Advances in Neural Information Processing Systems. 2018-December, p. 8768-8777 10 p.

Research output: Contribution to journalConference article

Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules

Gómez-Bombarelli, R., Wei, J. N., Duvenaud, D., Hernández-Lobato, J. M., Sánchez-Lengeling, B., Sheberla, D., Aguilera-Iparraguirre, J., Hirzel, T. D., Adams, R. P. & Aspuru-Guzik, A., Feb 28 2018, In : ACS Central Science. 4, 2, p. 268-276 9 p.

Research output: Contribution to journalArticle

389 Scopus citations

Detecting genome-wide directional effects of transcription factor binding on polygenic disease risk

Reshef, Y. A., Finucane, H. K., Kelley, D. R., Gusev, A., Kotliar, D., Ulirsch, J. C., Hormozdiari, F., Nasser, J., O’Connor, L., van de Geijn, B., Loh, P. R., Grossman, S. R., Bhatia, G., Gazal, S., Palamara, P. F., Pinello, L., Patterson, N., Adams, R. P. & Price, A. L., Oct 1 2018, In : Nature Genetics. 50, 10, p. 1483-1493 11 p.

Research output: Contribution to journalArticle

11 Scopus citations

Multimodal prediction and personalization of photo edits with deep generative models

Saeedi, A., Hoffman, M. D., DiVerdi, S. J., Ghandeharioun, A., Johnson, M. J. & Adams, R. P., Jan 1 2018, p. 1309-1317. 9 p.

Research output: Contribution to conferencePaper

2 Scopus citations
2017

Bayesian inference for Matérn repulsive processes

Rao, V., Adams, R. P. & Dunson, D. D., Jun 2017, In : Journal of the Royal Statistical Society. Series B: Statistical Methodology. 79, 3, p. 877-897 21 p.

Research output: Contribution to journalArticle

2 Scopus citations

Bayesian learning and inference in recurrent switching linear dynamical systems

Linderman, S. W., Johnson, M. J., Miller, A. C., Adams, R. P., Blei, D. M. & Paninski, L., Jan 1 2017.

Research output: Contribution to conferencePaper

Bayesian learning and inference in recurrent switching linear dynamical systems

Linderman, S. W., Johnson, M. J., Miller, A. C., Adams, R. P., Blei, D. M. & Paninski, L., Jan 1 2017.

Research output: Contribution to conferencePaper

25 Scopus citations

PASS-GLM: Polynomial approximate sufficient statistics for scalable Bayesian GLM inference

Huggins, J. H., Adams, R. P. & Broderick, T., Jan 1 2017, In : Advances in Neural Information Processing Systems. 2017-December, p. 3612-3622 11 p.

Research output: Contribution to journalConference article

5 Scopus citations

Reducing reparameterization gradient variance

Miller, A. C., Foti, N. J., D'Amour, A. & Adams, R. P., 2017, In : Advances in Neural Information Processing Systems. 2017-December, p. 3709-3719 11 p.

Research output: Contribution to journalConference article

13 Scopus citations

Variational boosting: Iteratively refining posterior approximations

Miller, A. C., Foti, N. J. & Adams, R. P., Jan 1 2017, 34th International Conference on Machine Learning, ICML 2017. International Machine Learning Society (IMLS), p. 3732-3747 16 p. (34th International Conference on Machine Learning, ICML 2017; vol. 5).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

7 Scopus citations
2016

A general framework for constrained Bayesian optimization using information-based search

Hernández-Lobato, J. M., Gelbart, M. A., Adams, R. P., Hoffman, M. W. & Ghahramani, Z., Sep 1 2016, In : Journal of Machine Learning Research. 17

Research output: Contribution to journalArticle

31 Scopus citations

Bayesian latent structure discovery from multi-neuron recordings

Linderman, S. W., Adams, R. P. & Pillow, J. W., Jan 1 2016, In : Advances in Neural Information Processing Systems. p. 2010-2018 9 p.

Research output: Contribution to journalConference article

16 Scopus citations

Composing graphical models with neural networks for structured representations and fast inference

Johnson, M. J., Duvenaud, D., Wiltschko, A. B., Datta, S. R. & Adams, R. P., Jan 1 2016, In : Advances in Neural Information Processing Systems. p. 2954-2962 9 p.

Research output: Contribution to journalConference article

108 Scopus citations

Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach

Gómez-Bombarelli, R., Aguilera-Iparraguirre, J., Hirzel, T. D., Duvenaud, D., Maclaurin, D., Blood-Forsythe, M. A., Chae, H. S., Einzinger, M., Ha, D. G., Wu, T., Markopoulos, G., Jeon, S., Kang, H., Miyazaki, H., Numata, M., Kim, S., Huang, W., Hong, S. I., Baldo, M., Adams, R. P. & 1 others, Aspuru-Guzik, A., Oct 1 2016, In : Nature Materials. 15, 10, p. 1120-1127 8 p.

Research output: Contribution to journalArticle

292 Scopus citations

Diagnosis of iron deficiency anemia using density-based fractionation of red blood cells

Hennek, J. W., Kumar, A. A., Wiltschko, A. B., Patton, M. R., Lee, S. Y. R., Brugnara, C., Adams, R. P. & Whitesides, G. M., Jan 1 2016, In : Lab on a Chip. 16, 20, p. 3929-3939 11 p.

Research output: Contribution to journalArticle

9 Scopus citations

Patterns of scalable Bayesian inference

Angelino, E., Johnson, M. J. & Adams, R. P., 2016, In : Foundations and Trends in Machine Learning. 9, 2-3, p. 119-247 129 p.

Research output: Contribution to journalReview article

16 Scopus citations

Predictive entropy search for multi-objective Bayesian optimization

Hernández-Lobato, D., Hernández-Lobato, J. M., Shah, A. & Adams, R. P., Jan 1 2016, 33rd International Conference on Machine Learning, ICML 2016. Weinberger, K. Q. & Balcan, M. F. (eds.). International Machine Learning Society (IMLS), p. 2219-2237 19 p. (33rd International Conference on Machine Learning, ICML 2016; vol. 3).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

13 Scopus citations

Taking the human out of the loop: A review of Bayesian optimization

Shahriari, B., Swersky, K., Wang, Z., Adams, R. P. & De Freitas, N., Jan 2016, In : Proceedings of the IEEE. 104, 1, p. 148-175 28 p., 7352306.

Research output: Contribution to journalReview article

739 Scopus citations

The Segmented iHMM: A simple, efficient hierarchical infinite HMM

Saeedi, A., Hoffman, M., Johnson, M. & Adams, R., Jan 1 2016, 33rd International Conference on Machine Learning, ICML 2016. Weinberger, K. Q. & Balcan, M. F. (eds.). International Machine Learning Society (IMLS), p. 3949-3959 11 p. (33rd International Conference on Machine Learning, ICML 2016; vol. 6).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Variability and predictability in tactile sensing during grasping

Wan, Q., Adams, R. P. & Howe, R. D., Jun 8 2016, 2016 IEEE International Conference on Robotics and Automation, ICRA 2016. Institute of Electrical and Electronics Engineers Inc., p. 158-164 7 p. 7487129. (Proceedings - IEEE International Conference on Robotics and Automation; vol. 2016-June).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

9 Scopus citations
2015

A Gaussian process model of quasar spectral energy distributions

Miller, A., Wu, A., Regier, J., McAuliffe, J., Lang, D., Prabhat, Schlegel, D. & Adams, R., Jan 1 2015, In : Advances in Neural Information Processing Systems. 2015-January, p. 2494-2502 9 p.

Research output: Contribution to journalConference article

1 Scopus citations

A physiological time series dynamics-based approach to patient monitoring and outcome prediction

Lehman, L. W. H., Adams, R. P., Mayaud, L., Moody, G. B., Malhotra, A., Mark, R. G. & Nemati, S., May 1 2015, In : IEEE Journal of Biomedical and Health Informatics. 19, 3, p. 1068-1076 9 p., 6846269.

Research output: Contribution to journalArticle

35 Scopus citations

Bayesian nonparametric learning of switching dynamics in cohort physiological time series: Application in critical care patient monitoring

Lehman, L. H., Johnson, M. J., Nemati, S., Adams, R. P. & Mark, R. G., Jan 1 2015, Advanced State Space Methods for Neural and Clinical Data. Cambridge University Press, p. 257-282 26 p.

Research output: Chapter in Book/Report/Conference proceedingChapter

4 Scopus citations

Celeste: Variational inference for a generative model of astronomical images

Regier, J., Miller, A., McAuliffe, J., Adams, R., Hoffman, M., Lang, D., Schlegel, D. & Prabhat, Jan 1 2015, 32nd International Conference on Machine Learning, ICML 2015. Bach, F. & Blei, D. (eds.). International Machine Learning Society (IMLS), p. 2095-2103 9 p. (32nd International Conference on Machine Learning, ICML 2015; vol. 3).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

12 Scopus citations

Combinatorial design of OLED-emitting materials

Aspuru-Guzik, A., Adams, R., Baldo, M., Aguilera-Iparraguirre, J. & Gómez-Bombarelli, R., Jun 1 2015, In : Digest of Technical Papers - SID International Symposium. 46, Book 1, p. 505-506 2 p.

Research output: Contribution to journalConference article

1 Scopus citations

Convolutional networks on graphs for learning molecular fingerprints

Duvenaud, D., Maclaurin, D., Aguilera-Iparraguirre, J., Gómez-Bombarelli, R., Hirzel, T., Aspuru-Guzik, A. & Adams, R. P., Jan 1 2015, In : Advances in Neural Information Processing Systems. 2015-January, p. 2224-2232 9 p.

Research output: Contribution to journalConference article

640 Scopus citations

Dependent multinomial models made easy: Stick breaking with the Pólya-gamma augmentation

Linderman, S. W., Johnson, M. J. & Adams, R. P., Jan 1 2015, In : Advances in Neural Information Processing Systems. 2015-January, p. 3456-3464 9 p.

Research output: Contribution to journalConference article

22 Scopus citations

Firefly Monte Carlo: Exact MCMC with subsets of data

Maclaurin, D. & Adams, R. P., Jan 1 2015, IJCAI 2015 - Proceedings of the 24th International Joint Conference on Artificial Intelligence. Wooldridge, M. & Yang, Q. (eds.). International Joint Conferences on Artificial Intelligence, p. 4289-4295 7 p. (IJCAI International Joint Conference on Artificial Intelligence; vol. 2015-January).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

12 Scopus citations

Graph-Sparse LDA: A topic model with structured sparsity

Doshi-Velez, F., Wallace, B. C. & Adams, R., Jun 1 2015, Proceedings of the 29th AAAI Conference on Artificial Intelligence, AAAI 2015 and the 27th Innovative Applications of Artificial Intelligence Conference, IAAI 2015. AI Access Foundation, p. 2575-2581 7 p. (Proceedings of the National Conference on Artificial Intelligence; vol. 4).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

14 Scopus citations

Guest editors' introduction to the special issue on bayesian nonparametrics

Adams, R. P., Fox, E. B., Sudderth, E. B. & Teh, Y. W., Feb 1 2015, In : IEEE Transactions on Pattern Analysis and Machine Intelligence. 37, 2, p. 209-211 3 p., 7004120.

Research output: Contribution to journalReview article

2 Scopus citations

Identifying outcome-discriminative dynamics in multivariate physiological cohort time series

Nemati, S. & Adams, R. P., Jan 1 2015, Advanced State Space Methods for Neural and Clinical Data. Cambridge University Press, p. 283-301 19 p.

Research output: Chapter in Book/Report/Conference proceedingChapter

4 Scopus citations

Mapping Sub-Second Structure in Mouse Behavior

Wiltschko, A. B., Johnson, M. J., Iurilli, G., Peterson, R. E., Katon, J. M., Pashkovski, S. L., Abraira, V. E., Adams, R. P. & Datta, S. R., 2015, In : Neuron. 88, 6, p. 1121-1135 15 p.

Research output: Contribution to journalArticle

142 Scopus citations

Predictive Entropy Search for Bayesian optimization with unknown constraints

Hernández-Lobato, J. M., Gelbart, M. A., Hoffman, M. W., Adams, R. P. & Ghahramani, Z., Jan 1 2015, 32nd International Conference on Machine Learning, ICML 2015. Blei, D. & Bach, F. (eds.). International Machine Learning Society (IMLS), p. 1699-1707 9 p. (32nd International Conference on Machine Learning, ICML 2015; vol. 2).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

30 Scopus citations

Probabilistic backpropagation for scalable learning of Bayesian neural networks

Hernández-Lobato, J. M. & Adams, R. P., Jan 1 2015, 32nd International Conference on Machine Learning, ICML 2015. Bach, F. & Blei, D. (eds.). International Machine Learning Society (IMLS), p. 1861-1869 9 p. (32nd International Conference on Machine Learning, ICML 2015; vol. 3).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

161 Scopus citations

Scalable Bayesian optimization using deep neural networks

Snoek, J., Ripped, O., Swersky, K., Kiros, R., Satish, N., Sundaram, N., Patwary, M. M. A., Prabhat & Adams, R. P., Jan 1 2015, 32nd International Conference on Machine Learning, ICML 2015. Bach, F. & Blei, D. (eds.). International Machine Learning Society (IMLS), p. 2161-2170 10 p. (32nd International Conference on Machine Learning, ICML 2015; vol. 3).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

155 Scopus citations

Spectral representations for convolutional neural networks

Rippel, O., Snoek, J. & Adams, R. P., Jan 1 2015, In : Advances in Neural Information Processing Systems. 2015-January, p. 2449-2457 9 p.

Research output: Contribution to journalConference article

85 Scopus citations
2014

Accelerating MCMC via parallel predictive prefetching

Angelino, E., Kohler, E., Waterland, A., Seltzer, M. & Adams, R. P., Jan 1 2014, Uncertainty in Artificial Intelligence - Proceedings of the 30th Conference, UAI 2014. Zhang, N. L. & Tian, J. (eds.). AUAI Press, p. 22-31 10 p. (Uncertainty in Artificial Intelligence - Proceedings of the 30th Conference, UAI 2014).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

8 Scopus citations

A framework for studying synaptic plasticity with neural spike train data

Linderman, S. W., Stock, C. H. & Adams, R. P., Jan 1 2014, In : Advances in Neural Information Processing Systems. 3, January, p. 2330-2338 9 p.

Research output: Contribution to journalConference article

10 Scopus citations

ASC: Automatically scalable computation

Waterland, A., Angelino, E., Adams, R. P., Appavoo, J. & Seltzer, M., Mar 14 2014, ASPLOS 2014 - 19th International Conference on Architectural Support for Programming Languages and Operating Systems. p. 575-589 15 p. (International Conference on Architectural Support for Programming Languages and Operating Systems - ASPLOS).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Scopus citations

Avoiding pathologies in very deep networks

Duvenaud, D., Rippel, O., Adams, R. P. & Ghahramani, Z., Jan 1 2014, In : Journal of Machine Learning Research. 33, p. 202-210 9 p.

Research output: Contribution to journalConference article

20 Scopus citations

Bayesian optimization with unknown constraints

Gelbart, M. A., Snoek, J. & Adams, R. P., Jan 1 2014, Uncertainty in Artificial Intelligence - Proceedings of the 30th Conference, UAI 2014. Zhang, N. L. & Tian, J. (eds.). AUAI Press, p. 250-259 10 p. (Uncertainty in Artificial Intelligence - Proceedings of the 30th Conference, UAI 2014).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

58 Scopus citations

Discovering latent network structure in point process data

Linderman, S. W. & Adams, R. P., Jan 1 2014, 31st International Conference on Machine Learning, ICML 2014. International Machine Learning Society (IMLS), p. 3268-3281 14 p. (31st International Conference on Machine Learning, ICML 2014; vol. 4).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

33 Scopus citations